Posts

Kütlemiz Nereden Geliyor? Higgs’den Değil!

21 Gram….

Eğer 70 kilo iseniz 21 gram vücudunuzdaki tüm elektronların kütlesidir. Bu 21 gram tamamen Higgs mekanizmasından gelmektedir. Bunun anlamı; elektronlarınız uzay ve zamanda hareket ederken higgs alanı ile etkileşime girerler ve bu etkileşimden dolayı kütle kazanırlar. Higgs alanı elektronları yavaşlatır ve ışık hızına ulaşmasını engellerler. (Higgs Bozonu Higgs Alanı Nedir?)

kütlenin kaynağıFakat sizin veya etrafınızdaki her şeyin kütlesinin büyük bir bölümü Higgs mekanizmasından gelmemektedir. Higgs mekanizması, Standart Model dediğimiz parçacık fiziğinde, elektron gibi atom altı parçacıkların kütlesini nasıl kazandıklarını ortaya koyan bir mekanizmadır. Kütle daha farklı bir yerden gelmektedir. Kütlenizin büyük bir kısmı Nötron ve Proton gibi parçacıklardan gelmektedir.

Nötron ve Proton atom altı parçacıklar değildir, kuark denilen atom altı parçacıklardan oluşmuşlardır.

kuarklarKuantum Renk Dinamiği (İngilizce: Quantum Cromer Dynamics) teorisine göre kuarklar birbiriyle Gluon denilen başka bir atom altı parçacık aracılığı ile etkileşirler. Cromer antik yunanda renk anlamına gelmektedir. Kuarklar renk denilen bir yüke sahiptirler. Bildiğimiz üç ana renk; kırmızı, mavi, yeşil. Elbette görülebilir ışıkla görülmesi için oldukça küçüktür kuarklar. Bu renkler Güçlü Nükleer Kuvvetin yükleridir. Renklerle isimlendirmemizin sebebi görülebilir ışıktaki ana renklere benzemektedir ve kuarkların birbiri ile etkileşimini anlamamıza yardımcı olur. Bir başka yazımda tetrakuarklardan bahsetmiştim. (Cern’de Tetrakuark’ların Keşfi ve Quark Yıldızları)

Kurallar basit. Kuarklar var olabilmesi için renksiz veya beyaz olmalıdır. Bunu yapabilmek için iki yönteminiz vardır. Üç ana rengi bir araya getirmek ya da bir kuark ile anti-kuarkı bir araya getirmek. Şimdi ise kuarklar bir araya geldiğinde ne olduğunu anlatalım.stella neutroni collissione oroBir çoğunuz belirsiz ilkesini bilmektedir. Belirsizlik ilkesi ile kuantum evreninde boş uzay diye bir şeyin olmadığını anladık. Boş uzayda aslında hiçlikten ödünç enerji alarak bir parçacık ve anti-parçacık ikilisi oluşup kısa sürede bir araya gelerek yok olurlar. Bu yok olma esnasında oluşan enerji ile ödünç aldıkları enerjiyi geri ödemiş olurlar. Kuarklar bu renk sistemi ile bir araya geldiklerinde kendi aralarında gerçekten boş uzay oluşmuş olur. Orada parçacık ve anti-parçacık ikilisinin oluşup yok olması yoktur artık. Burayı aklınızda tutun.

İşin güzel yanına gelirsek kuarklar bu renk kuralından dolayı tek başına bulunamazlar ve biz bir arada olan kuarkları asla ayıramayız. İstersek sonsuz enerjiye sahip olalım. Bunun sebebi ise kuarkları birbirinden uzaklaştırdıkça onları ayırmamız gereken enerji gitgide artacak. Bir noktaya geldiğinde verdiğimiz bu enerji kuark ve anti-kuark ikilisi oluşturmamızı sağlayacak. Bu sefer elimizde ayırmak isteyeceğimiz iki tane kuark grubu bulunacaktır. Bunu anlayabilmek için kuantum belirsizliğine dönelim. Parçacık ve anti-parçacık ikilisinin ödünç enerji alarak ortaya çıktığını söylemiştik. Verdiğimiz enerji ödünç almadan iki parçacık oluşmasını sağlar. Ya da ödünç almış parçacıkların borcunu ödeyerek özgür kalmalarını sağlamış oluruz.

protonun kütlesiFakat kuarkların kütlesi, protonun kütlesinin sadece %1’ni oluşturmaktadır. Kuarklar higgs alanı ile olan etkileşimi de biraz kütle kazandırır ama fazla değildir. Peki geri kalan kütle nereden gelmektedir?

Cevap enerjidir. Einstein’in ünlü formülünü bilirsiniz. Kim bilmez ki! Bu formüle göre çok küçük bir kütlede çok büyük bir enerjiye sahibizdir. Fakat bu formüldeki eşitlikte biraz değişiklik emc2yinyangyaptığınızda durum netleşir. E=mc2
‘yi şu şekilde değiştirirsek eğer; m=E/c2; çok fazla enerjiye sahip olursak kütleye de sahip olacağımız anlamındadır. Enerji/Madde ikilemi. Bir madalyonun iki yüzü. Einstein elindeki sıcak çay ile dolu bardağın, soğuk çay ile dolu bardaktan daha faza kütleye sahip olacağını belirtmişti. Bu doğruydu çünkü sıcak çay daha çok enerjiye sahiptir.

Bu protondaki enerji; kuarklar arasındaki Güçlü Nükleer Kuvvet alanındaki yoğun enerjidir. Renk sistemi oluşurken kuarklar arasında hareket eden kütlesiz gluon parçacığı, gerçek boşluğu oluşturmak için çok fazla enerji taşımaktadır. Bu enerji de protonun asıl kütlesini oluşturmaktadır. Yani kütlenizin %99u enerjidir.

İsterseniz buradan atomun %99’u boştur bilgisini de ekleyerek aslında neyiz tartışması yapabilirsiniz ama pek faydalı görmemekteyim ve tavsiye etmemekteyim. Çünkü insan ister mikro evren olsun ister makro evren, mesafeleri gözlerinde canlandıramadığı için kendi büyüklük ölçüsüne göre değerlendirme çalışmaktadır. Bu da onu garip düşüncelere itmektedir. Yakında kuantum fiziğini, klasik fizik bakış açısıyla bakarak anlamaya çalışanlara yazdığım yazımda anlayacaksınız.

Bilim İnsanları Yeni Bir Fizik Alanı Keşfetmiş Olabilir!

Herhangi bir konuda söylenen bir cümle vardır. “Büyüklük önemli değil” diye. Pekala bir çok şey için doğru olsa bile fizikte geçerli değildir. Özellikle atomaltı dünyasında büyüklük çok önemli bir şeydir.
Elektron ve nötron dışında proton atomun temel malzemelerinden biridir. Ve atom görebildiğim evreni, dünyamızı bizi bir araya gelerek oluştururlar. Bundan dolayı evreni anlamak için atomun bileşenlerini ve yapısını anlamak çok önemlidir.

Geçen sene bir grup bilim insanları protonun büyüklüğünü muonlar ile kıyaslayarak bulmak için bir deney yaptılar. Daha önceki denemeler elektronlarla idi. Ve bu deneyin sonuçları protonun aslında bizim bildiğimiz gibi olmadığını göstermiş. Daha iyi bir tanımla protonun bizim bildiğimiz büyüklükte olmadığını göstermiş ki aslında aynı anlama geliyor. Deneyin sonuçları protonun çapının 0,84087 femtometre (metrenin kattrilyonda biri) olduğunu göstermiş. Fakat sorun burada başlıyor. Normalde elektronlarla yapılan kıyaslamaya göre bu çap %4 oranında daha küçük.

Read more

Az Duyulan Ama En İlginç Obje – Nötron Yıldızı

Neredeyse tüm astronomi haberlerinde karadelikleri, güneş benzeri yıldızları, devasa büyüklükte yıldızları, bulutsuları, galaksileri, yıldız kümelerini ve bir sürü şeyin haberlerini görürüz. Her biri ilginçtir elbette. Ama onlar kadar ismi pek anılmayan ama hepsinde de daha da ilginç olan bir şey var. Nötron yıldızları. Şunu diyebilirim ki astronomi içerisinde nötron yıldızları benim favorimdir.

Bir yıldızın yaşam evrelerini biliriz. Gezegenimsi bulutsan bir yıldız doğar, füzyon tepkimeleri ile hidrojen atomlarını birleştirir ve en sonunda füzyon yapamayacak duruma geldiğinde ise büyük bir patlama ile dış katmanlarını dışarı savurur. Bu patlamadan geriye üç ihtimal kalır. Beyaz cüce, kara delik hep aşina olduğumuz şeyler. Birisi de nötron yıldızıdır.

Read more