Posts

Kara Delik Var mı Yok mu?

Kara delik yok mu? Kara delik teorisi alt üst oldu. Bunun gibi şeyler dönüyordu her yerde ve gördüğüm kadarıyla Hawking’i anlayamadıklarından üstü kapalı kara deliğe giren maddelerin başka bir şekilde bizim anlayamayacağımız bir enerji formunda evrene geri veriliyor deniliyordu. Sonra da aynı şeyleri bozuk plak gibi tekrarlamışlar. Baktım onlardan iş çıkmayacak kendim dalayım dedim ve Hawking’in bu konuda yayınladığı makaleyi okuyayım direk dedim. Bir tek Kuark sitesi güzel bir çeviri ile bu işi ciddiye almış. Onların yazısına da buradan ulaşabilirsiniz. İtiraf edeyim baya zorlandım. Ads teorisi, cft simetrisi, anti-de sitter uzay zamanı, de sitter uzay zamanı (her ikisi de 5 boyutlu bir uzaydan bahsediyor ve anti olanı küçülen normal olanı genişleyen uzay), Hartle-Hawking durumu, Unruh efekti, Hawking radyasyonu, Minkowski uzayını ve buraya daha sıralayabileceğim bir çok şeyi öğrenmek zorunda kaldım. Evet. Öğrenmek zorunda kaldım(öğrenebildim mi ben bile emin değilim). Çünkü normalde bunları kolay kolay duymazsınız. Ben de duymamıştım. Zaten teorik fizikçiler için anlatıldığından bunlar için ayrı uğraşmam gerekti. Zaten bir yerden sonra artık yardım istemek zorunda kaldım. İstanbul Teknik Üniversitesi’nde Yrd. Doç. Dr. Tolga Birkandan’dan yardım istedim mail olarak. Sağolsun beni cevapsız bırakmadı büyük bir özveri ile cevapladı sorularımı. Buradan kendisine teşekkür ederim. Aynı zamanda Gökhan Atmaca’ya da diğer bilimsel sayfalardan ve ülkemizin medyasından farklı davranıp işin daha detayına Kuark sitesinde indiği için tebrik ederim. Yazıma başlayayım artık.

Konuyu baştan alalım öncelikle. Genel göreliliğe göre enerji ve kütle uzay ve zamanı kıvırır. Bu kütle veya enerji eğer belli bir noktayı geçerse uzay ve zamanı öyle bir kıvırır ki kara deliği oluşturur. Ve fizik yasalarına göre kara deliğe girdikten sonra geri dönülemez. O geri dönülemeyen noktaya olay ufku deniliyor ki bu çok önemlidir, bir küre halindedir. Kara deliğin kütlesi arttıkça bu kürenin yüzey alanı da büyümektedir. Normalde kara deliğin içinde ne olduğu bilinemez çünkü içinden dışarıya hiç bir bilgi çıkışı yoktur. Fakat kara delik olan kütle/enerji bir iz bırakır. Bir nesne kara deliğin etrafında dönerken yakalanırsa onun açısal momentumu kara deliğin angular momentumuna eklenir. Kara deliğin kütlesi ve açısal momentumu etrafındaki uzay zamana yaptığı etkilerle gözlemlenir. Bu şekilde de enerjinin korunumu ilkesi ve açısal momentum ilkesinin doğruluğu kara delikler tarafından teyit edilir. Fakat termodinamiğin ikinci yasasını ihlal etmektedir. Termodinamiğin ikinci yasasına göre tersine işlemler gerçekleşemez. Mesela siz bir bardağı düşürdünüz ve kırdınız. Kırılan parçalar geri gelip birleşemez. Entropi düzensizliği her zaman artar. Asla azalmaz. Bu yasaya göre de evren devamlı olarak entropisi artmaktadır. Fakat kara deliğe giren nesne kaybolduğu zaman onun entropisi de kaybolur ve bu yasa çiğnenmiş olur. İşte burada Stephen Hawking 1970 yılında bu konuyu çözerek entropinin olay ufkunda azalmadığını gösterdi. 1974 yılında ise spontane olarak termal radyasyon yaydığını bir quantum prosesi/işlemi  yoluyla (Hawking Radyasyonu olarak bilinen işlem) uygulamalı olarak göstermiştir. (Bkz. ‘’The Quantum Mechanics of Black Holes’’, Stephen Hawking, Scientific American, January 1977). Şimdi burada bunu detaya indirelim. Aslında kara delik radyasyon yaymıyor. Olay ufkunun etrafında oluşan parçacık ve anti-parçacık çiftinden anti-parçacık kara delik tarafından yutulurken parçacık ise uzaya kaçıyor ve radyasyon olarak gözlemleniyor. Kara deliğe giren anti-parçacık olduğu için geçen süre zarfında kütle kaybediyor. Ama hawking radyasyonu ile entropi düzensizliği artıyor kuralı da sağlanmış oluyor. Bu düşünceye göre kara delik yuttuğundan daha fazla kütle kaybettiği için eninde sonunda yok olacaktır. Ve diğer bir ters düşme olayı burada oluyor. Bir kara delik yok olduğunda ona giren tüm her şey de yok olmuş oluyor. Bu da madde yok olamaz ilkesine ters düşüyor.

Bir kara deliğin illüstrasyonu.

Bir kara deliğin illüstrasyonu.

Kara delikteki olay ufku Eisntein’in izafiyet teorisinin denklemlerinin doğal bir sonucuydu ve araştırmacılar eğer bir gözlemci olay ufkuna düşerse ne olur diye sormuştu. İlk başta gözlemci kara deliğin merkezine çekilir ve o büyük kütlenin altında ezilerek yok olur denmişti. Fakat daha sonra kuantum fiziği ile bu duruma bakıldığında olay ufkunun çok yüksek enerjili bir alan olacağını ve gözlemciyi bir çerez gibi yakacağını buldular. İşte buna ateş duvarı ismini verdiler. Bu ateş duvarı gene Hawking Radyasyonu olarak anlattığımız radyasyon olarak gözlemlenen parçacıklardan dolayı oluşuyor (aslına bakarsanız Hawking burada kendi teorisini geliştiriyor).  Fakat bu ateş duvarı hem genel görelilik ile çakışıyordu hem de kuantum kütleçekimindeki CPT değişmezliğini sağlamıyordu. Genel göreliliğe göre olay ufku normal olmalıydı. Gözlemci için ayrı bir fizik kuralı işlememeliydi. CPT değişmezliği için ise Tolga beyin bana yazdığını aynen yazıyorum buraya. Kendisi gayet güzel yazmış.

CPT değişmezliği yük (charge), parite (parity) ve zaman (time) tersinmesi durumunda kuramınızın değişmeden kalması gerektiği anlamına geliyor. Kara delikleri sadece genel görelilikle incelerseniz işin içine kuantum fiziği girmez, klasik fizik yaparsınız. Kuantumu işin içine sokunca CPT değişmezliği gibi şeyleri sağlamak zorundasınız.

İşte burada da ateş duvarı bu değişmezliği sağlamıyordu.

Buraya kadar her şeyi anladık diye düşünüyorum. Şimdi sıra Hawking’i anlamak. Hawking’in makalesi hakkında yorumlamamı yapmadan önce fizikçilerin de benim gibi düşündüğü bir şeyi belirtmek isterim. Ya da ben onlar gibi düşünüyorum. Bakış açısı = ) Bazı sayfalarda da ntv’de de belirtilmiş. 30 sene boyunca böyle inanmıştık şimdi buna mı inanacağız. Öncelikle bilim din değildir. Bunlar da hipotezdir. Asla gerçek gözüyle bakmayın. Bilimsel yöntemlere ayak uydurun. Kısacası bilimi dinleştirmeyin. Hawking’in bu makalesi daha felsefi yönünü anlatan makale. Matematiksel denklemleri anlatacağı makale önümüzdeki aylarda onun tarafından yayınlanacak ve fizikçiler işte o zaman bunu irdelemeye başlayacak. Neyse .

Hawking makalesinde ilk başta bu ateş duvarı paradoksunu ele almış.

Ateş duvarı için ilk engelin gözlemcinin olay ufkunda gözlemlediği ateş duvarının aslında olmayan uzay zamanın bir fonksiyonu olan görünür ufuk dediği ikinci bir olay ufku olacağıdır. Yani olay ufkunun dışında bir de görünür ufuk var. Yeni düşüncesine göre karadelikten giren madde veya enerji yok olmuyor. Tekilliğe yani merkeze gidip sonsuz kütlenin altında ezilmiyor da. İkinci bir olay ufku olan görünür ufukun ardında kısıtla kalıyor. Fakat burası o kadar yoğun ve kaotik durumda olacaktır ki artık madde formunda kalamıyor ve enerjiye dönüşüyor. Kara delikten ise dediğine göre sadece ışık hızında olan şeyler kurtulabilir. Teoride.

İkinci olarak ise ateş duvarının olmasına mani olan şey ise CPT değişmezliğini sağlamamasıdır. Bir çok şey anlatıyor Hartle-Hawking durumu ve Unruh efekti durumu gibi ama kısaca CPT değişmezliğini sağlayamadığı için ateş duvarı yoktur.

Aynı zamanda ateş duvarı ve olay ufku Schwarzschild anti-de sitter uzayında metric ölçümlemesi yapıldığında bu ölçümlemede olay ufku ve ateş duvarı zamanı gerçek zamana göre yok olması gerekiyor. Bunu da açıklayalım. Anti de Sitter (AdS) uzayı negatif kozmolojik sabite sahip, yani daralan bir uzay. Önemi, siz (n) boyutlu AdS uzayında tamamen genel görelilik kullanarak hesap yapıp entropiyi bulursanız, aynı sonucu (n-1) boyutlu CFT kullanarak da bulabiliyorsunuz. Buna AdS/CFT karşılık gelmesi correspondence) deniliyor. Daralan uzayzaman gözlemler için ilginç değil çünkü genişleyen bir evrende yaşıyoruz gibi görünüyor.Einstein alan denklemleri (çözümü size uzayzamanın tüm özelliklerini taşıyan, metrik adında bir şey verir) yazılırken denklemin bir tarafına uzayzamanın eğrilikleri hakkındaki bilgileri, diğer tarafa da uzayzaman içindeki maddeyi betimleyen kısmı yazarsınız. Enerj-momentum tansörü maddeyi betimleyen kısım.

Tüm bu düşüncelerinin sonucunda olay ufku, ateş duvarı yoktur dolasıyla kara delik de yoktur. Ama unutmayalım ki bunlar sadece hipotez. Kara delik izafiyet teorisinin denklemleri sonucu var. Hawking’in bu yeni hipotezine göre aslında yok. Farklı bir şey var. Bu durum işin içine kuantum fiziği girdiğinde oluşuyor ki daha önce big bang anında kuantum fiziği ile izafiyet teorisinin anlaşamadığından bahsetmiştim bir yazımda. Orada da big bang anı çok küçük noktada çok büyük kütleler olduğu için her ikisinin bir arada kullanılması gerekiyor ama sonuçlarda sonsuzluk değeri çıkıyor ve bilim insanlarını deli ediyordu. Her şekilde artık fizik dünyasına ikisini birleştiren ve tamamlayan yeni bir teori gerektiği ortada. Bu benim şu ana kadar en çok zorlandığım yazı oldu. Artık şu anki halimle fizikde gelebildiğim sınır bu. Umarım ileride daha ileri gidebilirim. Keşke fizik okuyabilseymişim = )

Kaynak:
Stephen Hawking – Information Preservation and Weather Forecasting for Black Holes – arXiv:1401.5761

Madde Boşluktan mı İbaret? – Sorulara Cevaplar-

Rutherford'un atom çekirdeği keşfinde kullandığı düzenek. Kurşun kutunun içerisindeki radon kaynaktan saçılan alfa parçacıkları altın folyoya çarpıyor ve altın folyodan çeşitli yönlere saçılarak folyoyu çevreleyen çinko sulfid dedektör ekranı üzerinde izler bırakıyor.

Rutherford’un atom çekirdeği keşfinde kullandığı düzenek. Kurşun kutunun içerisindeki radon kaynaktan saçılan alfa parçacıkları altın folyoya çarpıyor ve altın folyodan çeşitli yönlere saçılarak folyoyu çevreleyen çinko sulfid dedektör ekranı üzerinde izler bırakıyor.

Madde Boşluktan mı İbaret? yazımdan sonra bana sorular soruldu. Burada onları cevaplamak istedim.

Öncelikle Nazan’ın sorusunu cevaplayayım. Sorduğu şey atomun çekirdeği keşfedilirken kullanılan yöntemin detayları neydi ve elektron ışık hızına yakın hareket ettiğinden dolayı kürenin tüm her yerinde gözükmesi gerekmez miydi?

Deneyi detaylı anlatmak için “Parçacık Fiziği-En Küçüğü Keşfetme Macerası-Sezen Sekmen” kitabından alıntı yapacağım. Nazan kopyala yapıştır yapmıyorum kitaptan kendim yazıyorum değerimi bil.

“Deneyin özü alfa parçacıkları denilen sondaları inceltilmiş bir altın folyoya ateşleyip saçılma yönlerini inceleyerek altın atomlarının iç yapısının nasıl olduğuna dair bir fikir elde etmekti. Burada altının bir element olduğunu, yani moleküllerden değil, tek çeşit altın atomlarından yapıldığını hatırlayalım. Alfa parçacıkları da bugün bildiğimiz halleriyle elektronları alınmış helyum atomu çekirdekleridir. Bu deneyde kullanılan alfa parçacıkları radyoaktif bir kaynak olan radon elementinden kendiliğinden yayılıyordu. Radon kaynak, altın folyoya dönük yüzünde çok küçük bir deliği olan ağır, kurşun bir kutuya yerleştirilmişti. Kurşun kuru alfa parçacıklarının geçmesini engelliyor, parçacıklar sadece kutudaki delikten bir ışın halinde fırlayarak hızla altın folyoya çarpıyor ve altın folyonun içindeki yapılarla etkileşerek bu etkileşimlerin gerektirdiği yönlere saçılıyordu.

Bu deney düzeneğinin çevresi, alfa parçacıkları üzerine çarptığında ışınlar yayan çinkosülfid bir ekranla çevrilmişti. Böylece levhada parlayan ışıklar gözlenerek altın folyoya çarpıp saçılan alfa parçacıklarının hangiyöne gittikleri tespit edilebilecek ve düz yoldan sapma açıları ölçülebilecekti. Eğer altın folyonun içinde boşluklar varsa alfa parçacıkları folyodan karşıya geçecek, eğer folyonun içinde sert, katı yapılar varsa alfa parçacıkları bu yapılara çarparak büyük açılarla gerisin geri saçılacaklardı. Thomson’un erik pudingi modeline göre atomun artı yüklü kısmı atomun tüm hacmine yayılmış olmalıydı. Artı yüklü kısım kütleliydi, ama eğer o kadar büyük hacme dağılmışsa yoğunluğu az olmalıydı. Bu yüzden alfa parçacıkları altın folyoya fırlatıldığında folyoyu delerek ve çok küçük açılarla saparak karşıya geçmeleri bekleniyordu. Tıpkı uçakların bulut yığınlarının içinden rahatça geçebilmeleri gibi.

Ama böyle olmadı. Evet, alfa parçacıklarının çoğu yalnızca biraz saparak karşıya geçtiler, ancak alfaların sekiz binde biri dosdoğru geriye, radon kaynağına doğru saçıldı. Rutherford sonucu şöyle yorumlamıştı: “Tıpkı bir peçeteye 15 inçlik bir mermi sıkmışsınız da mermi gerisin geri size dönmüş gibi!”. Sonra Rutherford böyle bir durumu yaratacak şartları hesapladı ve şu kanıya vardı: Atomun kütlesinin çok büyük bir kısmı merkezde yoğunlaşmıştı ve geri kalan her yer boşluktu. Bu yoğun öze çekirdek adını verdi. Ve çekirdekte toplanan bu kütle artı elektrik yüklüydü.”

Yani Nazan ben elektron hatırlamışım ama yanlış hatırlamışım. İyonize olmuş yani elektronları olmayan helyum çekirdeği imiş. Bu yüzden ışık hızında hareket ve her yere saçılma söz konusu değil.

Şimdi sıra Dolunay’ın sorularına geldi. Onun sorularını direk kopyala yapıştır yapacağım. Çok soru soruyor ama iyi oluyor = ).

“Peki elektronların yaptıkları dalga hareketini yapma nedenleri nedir? Yapıları böyle mi diyorlar.. Bir de herşeyin boşluk olduğu bir yerde nasıl maddesel bütünlük algılıyoruz.. Normalde elimin eşyaların içinden geçmesi gerekir sanki ya da duvarın ardını görebilmem..”

Şimdi öncelikle elektronların dalga hareketini yapma sebebini açıklayalım. Hiç yormayacağım kendimi direk wikipedia’dan dalga parçacık ikiliği tanımını yapıştıracağım buraya. Evet üşeniyorum = ).

“Dalga parçacık ikiliği, fizikte elektromanyetikdalgaların aynı zamanda parçacık özelliğine sahip oldukları ve parçacıkların da (mesela elektronların) aynı zamanda dalga özelliklerine sahip oldukları anlamına gelir. Başka bir deyişle, ışık ve madde aynı anda hem parçacık hem dalga özelliklerine sahiptirler; ne başlı başına bir dalga ne de başlı başına bir parçacıktırlar.

Klasik olarak dalga ve parçaçık modelleri tahayyül edilebilen iki farklı varoluş tarzıdır. Işığın ve maddenin küçük taneciklerden mi oluştuğu, yoksa uzaya yayılmış bir dalga olarak mı görülmeleri gerektiği sorularının kökeni çok eskiye dayanır. 19. yüzyılın sonunda, kuantum kuramının gelişmesinden hemen önce J. C. Maxwell‘in elektromanyetik kuramıışık için çok sağlam bir dalga modeli sunuyordu. Aynı zamanda atomların keşfi ile maddenin küçük taneciklerden oluştuğu fikri de netlik kazanmıştı. Böylece ışık için dalga modelinin, madde için ise tanecik modelinin geçerli olduğu düşünülüyordu.

Kuantum kuramının gelişmesiyle, hem ışığın foton denilen taneciklerden oluştuğu hem de atomu oluşturan parçaçıkların aynı zamanda dalga özelliklerinin olduğu keşfedildi. Böylece ne ışık için, ne de madde için belli tek bir modelin geçerli olamayacağı görüldü. Her ne kadar insan tahayyülünün dışında da olsa, madde ve ışığın hem parçacık hem de dalga özelliklerinin bulunduğu sonucuna varıldı. Dalga parçacık ikiliği, madde ve ışığın bu ikili doğasına verilen isimdir.

Gerçekte dalga ve tanecik modelleri birbirlerini dışlayan varlık biçimleri olduğundan, bir nesnenin bir anda hem dalga hem de parçacık olarak görünmesi mümkün değildir. Dalga parçacık ikiliğinden kasıt madde veya ışığın belli koşullarda dalga, belli koşullarda ise parçacık özellikleri göstermesidir. Dalga olarak mı yoksa parçacık olarak mı görüneceği ise onun nasıl gözlemlendiğine bağlıdır. Madde parçacıkları, eğer konumunu ortaya çıkaran bir gözlemde bulunulursa parçacık gibi, momentumunu (hızını) ortaya çıkaran bir gözlemde bulunulursa dalga gibi görünmektedirler.

Maddenin bu ikili karakteri yalnızca atom seviyesindeki gözlemlerde (mikroevrende) ortaya çıkmaktadır.”

Gayet açıklayıcı bir alıntı oldu diye düşünüyorum.

Şimdi ise ikinci soruya gelelim. Aslında önceki yazımda bunu açıklayacaktım aklımdaydı ama unutmuşum. İyi ki sordun bu soruyu. Eğer atomun yüzde 99,999’u boşsa neden iç içe geçmiyoruz. Bu elektromanyetik kurallardan dolayı oluşmaz.

Elektromanyetik kurallara göre aynı elektrik yükündeki iki şey birbirini iter. Bunlardan dolayı bir atom bir atomla karşı karşıya geldiğinde elektronları aynı yüke sahip olduğundan birbirlerini iterler ve atomların iç içe geçmesine mani olur. Bu sayede de bildiğimiz madde evren oluşur. Bu kadar basit.

Sorularını varsa arkadaşlar yorum yazabilirsiniz. İyi akşamlar.

Kaynaklar:
Parçacık Fiziği-En Küçüğü Keşfetme Macerası-Sezen Sekmen
Wikipedia-Dalga Parçacık İkiliği

Madde Boşluktan mı İbaret?

Evet. Kesinlikle öyle. Gördüğünüz her şeyin yüzde 99,99’u boştur (Tabi burada bizim anladığımız hiçlik boşluk değil o ayrı bir konu). Atomu biliyorsunuz. Çekirdekten ve etrafında fırıl fırıl dönen elektronlardan ibarettir. Peki hiç bu çekirdeğin ve elektronun büyüklüğünü ve birbirine olan uzaklığı merak ettiniz mi? Anlayabilmeniz için örnekleme yapalım.

Her bir atomun %99,999999999'u boşluktan ibarettir. Bu şu anlama geliyor; -Baktığınız bilgisayar -Oturduğunuz sandalye -Ve siz Neredeyse yoksunuz.

Her bir atomun %99,999999999’u boşluktan ibarettir.
Bu şu anlama geliyor;
-Baktığınız bilgisayar
-Oturduğunuz sandalye
-Ve siz
Neredeyse yoksunuz.

Hidrojen atomunu dünya büyüklüğünde varsayın. Hidrojenin çekirdeği (tek bir proton) dünyanın merkezinde olacaktır ve büyüklüğü ise bir basketbol topu kadar olacaktır. Yalnız, minicik bir elektron (çok daha küçük bir şey oluyor elektron) ise dünyanın atmosferinde dolanacaktır. Peki neden bu kadar uzak?

Atom ve bileşenlerinin ilk keşif zamanlarında elektronun çekirdeğe çok yakın ve atomun dolu dolu olduğu düşünülüyordu. Atom çekirdeğinin ilk keşfinde bir yöntem uyguladılar. Bir maddenin atomunu ne olduğu aklıma şimdi gelmeyen bir kürenin içine koydular. Atomun çekirdeğinden önce elektron keşfedilmişti. Ve bu atoma elektronlar yollandı. Bu gönderilen elektronlar o zamanki düşünceye göre atoma çarpacak ve geri yansıyarak kürenin bir çok yanına çarpacaktır. Fakat beklenmedik bir şey oldu. Gönderilen elektronların neredeyse tamamı atomu es geçip kürenin tam karşısına düştü. Çok az bir kısmı ise kürenin diğer yanlarına savrulmuştu.

Bu şekilde bir resim çıkardıklarında atomun büyük bir kütlesinin çekirdekte toplandığını ve bu çekirdeğin çok küçük bir alan kapladığı anlaşıldı. Atom’un %99’u boşluktan ibaretti.

Peki neden elektronlar atomun çekirdeğinden uzakta? Elektronlar hem parçacık hem de dalga hareketi yaparlar. Soldaki resimde de bu dalga hareketinin ne olduğunu görebilirsiniz. Elektronların enerjileri bu dalga hareketine göre belirlidir. Elektronlar bu dalga hareketinin büyüklüğünden daha yakın olamazlar. Pauli dışlama ilkesine göre bir atomda her bir elektron farklı enerji seviyesinde bulunmak zorundadır. Bu yüzden aynı yörüngede bulunamazlar. Elektronlar çekirdeğe yakın oldukça enerji seviyeleri Dalga Hareketidüşüktür ve bu dalga boyları daha ince olmaktadır. Daha dıştaki elektronların enerji seviyeleri yükseleceği için kademeli olarak dalga boylarının genişliği de artar. Evet sorumuzun cevabı burada yatıyor. Bu dalga boyunun genişliğinin en küçüğü bir atomun çekirdeği için inanılmaz boyutlardadır. Ve bu yüzden çekirdek ile elektron arasında bu kadar mesafe vardır. Bir yerde okumuştum doğru mu emin değilim. Dünyadaki tüm insanlardaki atomların içindeki boşluğu yok edip birleştirirseniz tüm insanoğlu bir kitap büyüklüğüne sıkışabilmektedir. Fark ettiyseniz klasik lise kitaplarınızda bir yörüngede dönen elektron değil dalga olarak hareket eden ve asla yeri tespit edilemeyen bir elektron yörüngesinden bahsediyoruz aynı zamanda. Öğrendiğiniz fizik 1950’li yıllardan kalmadır. Tabi kendinizi geliştirmediyseniz. Ya da üniversitede fizik okumadıysanız.

Bu aynı zamanda neden elektronun çekirdeğe düşmemesinin nedenidir. Proton (+) yüktedir ve elektron ise (-) yüktedir. Normalde birbirini çekip çökmelidir denilir. Fakat bu dalga hareketi elektronun düşmesine mani olmaktadır işte.

Kısacası siz biz her şey yok gibi bir şey. Yazımın başlığındaki sorunun cevabı evet.

Kaynaklar ve Referanslar:
-Jefferson Lab, Howard Fenker, Staff Scientist – Why are electrons so far away from the nucleus of an atom? Link
-Univercity Of Cambridge – The Naked Scientists – Why don’t an atom’s electrons fall into the nucleus and stick to the protons? Link

Uzayda Yelkenli Gemiler Kullanmak-Yelkenler Fora

İnsanoğlu son yüzyılda uzay macerası başladığından beri uzayda yolculuk yapmak için hep daha iyi yöntemler deniyor, keşfediyor. Bu son yüzyılda aya insanlı yolculuk yapıldı, marsa, venüse, merküre, satürne, jüpitere ve bir çok yere uzay sondaları gönderildi. Hatta Voyager uzay aracı güneş sisteminden çıkış yaptı ve kendisi güneş sistemi dışına çıkan ilk insan üretimi araç oldu. İleride bir gün insanların kendisi de güneş sisteminin dışına yolculuk yapacaktır sanıyorsam. Ama samanyolunun dışına çıkmak epey zor olacaktır.

Read more

Kuantum mekaniği ve İzafiyet Teorisinin Bir Araya Gelememe Problemi

Evet bu ikili birbirini sevemiyor. Her defasında kavga ediyorlar. Oysa biz hep evlensinler çoluk çocuk yapsınlar diye bekliyoruz.
Şaka bir yana büyük patlama teorisinin (isminin patlama olduğuna bakmayın patlama yoktur birden genişlemeye başlayan evren modelidir. O konu hakkında da bir ara yazayım. Yoktan var olan evren ya da patlayan evren olarak bilen insan çok) en bilinemez bölümü big bang anıdır. Bu anda evren bir parçacık büyüklüğünde bir alana sıkışmıştır. Madde yoktur saf enerji vardır, sonsuz kütle vardır ve sonsuz sıcaklık. Tabi ki sonsuz mu değil mi bilinemez ama ölçebileceğimizden fazla olduğu için sonsuz deniliyor işte. Bu noktayı aklınızda tutun. Burayı yazının ilerisinde değineceğim.

Read more