Posts

Büyük Patlamadan Önce Ne Vardı?

Bu soruyu cevaplama isteğim eski Soru-Cevap sayfamda sorulmasından kaynaklanıyor. Orada sorulan her soruyu sırasıyla, zamanla burada daha detaylı bir şekilde ele alarak yazmayı planlıyorum.Böylece insanların merak ettiği şeyleri cevaplandırmış olacağım hem de bilgi vermeye devam edeceğim. Tabi canımın istediği şeyleri de yazmaya devam edeceğim.

Yalnız şunu belirtmek istiyorum. Büyük patlamadan önce ne vardı diye merak ediyorsunuz ama büyük patlama anını biliyor musunuz peki? Biliyorum demeyin çünkü dünyada hiç kimse bilmiyor ne olduğunu. O anı bilmeden öncesini merak etmek de ilginç aslında.

Sorunun en basit yanıtı. Büyük patlamadan önce ne olduğu bilinmiyor. Tahminler var. Ama şu an büyük patlama anını bile bilemezken, öncesinde bir şey var mıydı?, varsa ne vardı? sorularını cevaplama şansımız yok. Yavaş yavaş ilerleyerek anlatacağım… Ama bunlardan lütfen bir sonuç çıkarmayın ya da yeni çağ dinleri oluşturmayın rica ediyorum :)

buyuk-patlamaÖncelikle, şu anki evrenimizin başlangıcı büyük patlama. Bizim evrenimizin daha öncesinde ne vardı sorusu aslında anlamsız bir soru. Neden? Bizim bildiğimiz evrende zaman boyutu vardır. Uzamsal 3 boyut ve bir adet zaman boyutu büyük patlama esnasında oluştu. Yani zamansal olarak büyük patlamadan öncesi olamaz. Bundan dolayı öncesini sormak mantıksızdır. Aynı zamanda eğer bizim hiç bir şekilde anlayamayacağımız başka bir yapı veya bir şey varsa zaman olmadığı bir şekilde, bu şey bizim evrenimiz olmayacağı için gene soru anlamsızlaşır ve cevap verilmesi imkansızlaşır. Çünkü bizim algılarımız 3 uzamsal boyut ve bir zaman boyutuna göre evrimleştiği için istesek de algılayabileceğimiz bir yapı olmayacaktır. Ama ileride gelişen teknoloji ve matematik ile dolaylı yollardan keşfetme şansımız olabilir.

Şimdi diğer seçeneklere gelelim. Sonsuz genişleme modeli. Bu aynı zamanda çoklu evrenler hipotezini oluşturan model. Bu model, büyük patlamadan hemen önce inflation genişlemesinin gerçekleştiği bir hipotez olan inflation genişlemesini kaynak olarak ilerler. Inflation genişlemesi büyük patlamadan hemen önce saniyenin bir çok kez milyarlarca kez birinde evrenin nanometre boyutundan 250 milyon ışık yılı mesafesine genişlemesidir. Inflation alanı denen bir alanın yüksek enerji seviyesi denen bir durumdan düşük seviyeye düşmesi esnasında ortaya çıkan enerjinin böyle muazzam bir genişlemeye sebep olduğu daha sonra normal itici özelliğini yitirerek büyük patlamadan sonrasında oluşan parçacıkların temeli olduğu düşünülüyor. Sonsuz genişleme modelinde inflation alanı sonsuza dek genişliyor ve bu alanın bazı bölgelerinde enerji deşarj olduğunda evren, evrenler oluşuyor. Buna göre ilerlersek büyük patlama öncesinde inflation alanı vardır. Ve hemen şu soru gelir; ondan öncesinde ne vardı? Aslında bu soruların şu an bilimsel olmadığını, kendi içinde paradoks oluşturduğunu hemen anlayabiliriz. Tıpkı evren neyin içinde genişliyor sorusu gibi.

stella neutroni collissione oroBaşka bir hipotezde ise büyük patlamanın iki evrenin sınırlarının çarpışması sonucu oluştuğunu söyler. Kozmik mikrodalga fon ışımasında da bu izin olduğunu belirtir. Ama yukarıdaki hipotez gibi bu da ispatlanması oldukça güç. Bu hipoteze göre büyük patlamadan öncesinde bir şey var diyemeyiz. Çünkü hiçlikteki evrenlerin çarpışması ile yoğunlaşan enerji evreni oluşturmuştur. Ancak hiçlikteki diğer evrenlerden söz edilebilir.

İlginç bir hipotez vardır. Evrenin 4 boyutlu bir kara deliğin 3 boyutlu olay ufku olduğunu söyler. Bununla ilgili daha önce bir yazı (Evrenin Nasıl Var Olduğuna Dair Yeni Bir Teori) yazmıştım. Bu hipoteze göre de daha öncesinde kara deliğe dönüşen ve çökmekte olan bir 4 boyutlu bir yıldız ve onun bulunduğu bir evren vardı.

Anlaşıldığı üzere ihtimaller çok ama kesin cevap yok. Hatta belki büyük patlama teorisi çökertilir belli mi olur?

Evrenin Zaman Çizelgesi -Bölüm 1-

Merhaba arkadaşlar. Bir süredir Big Bang’den günümüze evrenin gelişim ve evrim aşamaları hakkında yazmak istiyordum. Bu yazıyı hazırlarken iki bölüm halinde toplam 10 evreden bahsedeceğim. Bu iki bölüm bittikten sonra evrenimizin öngörülen geleceği ile ilgili ayrı bir yazı, en sonunda ise Big Bang ile ilgili daha detaylı bir yazı yazacağım. Evrenin zaman çizelgesi başlıklı yazı dizisi çok detaylı bir yazı olmayacak. Başlangıç amaçlı olduğundan, yıl yıl neler olduğunu anlatan bir metin değil. Daha çok Big Bang anı, ilk yıldız oluşumu, galaksiler, bulutsular ve devamı şeklinde evrelere böldüm. Daha detaylı halini, yani yıl yıl evrelendirilmiş versiyonunu ileride yazmayı planlıyorum. Hadi başlayalım.

Big Bang (Büyük Patlama)

Big Bang yaklaşık 13,87 milyar yıl önce gerçekleşti. Evren büyük bir karışıklık ile başladı ve uzay ve zaman oluştu. Tüm uzay, zaman, madde, enerji, entropi yani kısacası her şeyin kaynağı Big Bang’tir. Saniyenin ilk trilyonlarca trilyonlarca ve trilyonlarca küçük kısmında, evren Planck mesafesi dediğimiz bir mesafedeydi. Bu mesafe, atomun trilyonlarca trilyonlarca ve trilyonlarca kez küçük boyutudur. Daha sonra kozmik enflasyon denilen, akıl almaz hızda (yani ışıktan da hızlı) bir genişleme süreci başladı. Hayal etmesi zor da olsa, bu genişleme sürecinin büyüklüğünü aklımızda canlandırmak için, bir nanometrenin 250 milyon ışık yılına genişlediğini söyleyebiliriz. Bu kozmik enflasyon sonradan durdu ama Evren genişlemeye devam etti.

Evren genişledikçe ve soğudukça, simetri kırılmalarıyla 4 temel kuvvet ortaya çıktı. Bu kuvvetler yoluyla oluşan parçacıklar bir araya gelerek ilk hidrojenlerin, biraz helyumun ve çok az miktarda lityumun çekirdeklerini oluşturdular. Bu elementlerin yörüngelerinde elektronları yoktu; çünkü Evren o kadar sıcaktı ki, aşırı enerji yüklü elektronlar yerinde duramıyordu. Bu aynı zamanda ışığın, yani fotonların hareket etmesini de önlüyordu. Bu yüzden Evren’in ilk zamanlarında ışık yoktu, Evren opak bir haldeydi. Big Bang’den 350 bin yıl sonra Evren yeterince soğuduğunda, elektronlar çekirdeklerin etrafında yörüngeye girdi ve ışık ilk kez hareket etmeye başladı. İşte Mikrodalga Kozmik Fon Işıması dediğimiz şey, bu ilk ışıktır.

Bir diğer önemli de nokta da, başlangıçta Evren’deki madde ve anti-madde miktarının birbirine eşit olmasıdır. Bu ikisi bir araya gelerek enerjiye dönüşüp yok olurken, sebebi ve nasıl olduğu bilinmeyen bir şekilde madde baskın çıkarak görülebilir evrenimizi oluşturdu.

İlk Yıldızların ve Galaksilerin Oluşumu

Evren genişliyor, soğuyor ve maddeler oluşmuş durumdayken, Big Bang anındaki çok küçük farklılıklar ve kütleçekimi sayesinde mevcut maddeler bir araya toplanmaya başladı. Bu şekilde ilk yıldızlar oluştu. İlk Nesil Yıldızlar diye adlandırılan bu yıldızlar devasa boyuttaydı. Daha sonra bu yıldızların da bir araya toplanmasıyla ilkel galaksiler, diğer bir adıyla kuasarlar oluştu. Yıldızlar, çekirdeklerinde hidrojeni helyuma, helyumu da üçlü alfa süreci ile karbona dönüştürerek element çeşitliliğinde artışa yol açtılar. Üçlü alfa süreci şu şekildedir: İki helyum atomu birleşerek berilyum atomunu oluşturur; daha sonra berilyum atomu bir helyum atomu ile birleşerek karbon atomunu oluşturur. Yıldızlarda meydana gelen bu süreç, artık füzyon yapılamaz noktaya gelene kadar (atom numarası 9 olan demir elementine kadar) devam edebilir. Sürecin hangi elemente kadar devam edebileceği yıldızın kütlesine bağlıdır. Demir elementinden sonra füzyonun devam edememe sebebi şudur; demir atomunu füzyon ile birleştirirseniz eğer, füzyon için gerekli olan enerji, füzyondan elde edilecek olan enerjiden daha fazladır. Bu yüzden ve yıldızın iç sıcaklığının yetersiz kalmasından demir elementinde füzyon gerçekleşmiyor. Füzyonun durduğu bu evrede yıldız süpernova patlaması yaşıyor.

İlkel galaksilerden söz ederken şu bilgiyi de es geçmemek gerekir: Zaman çizelgemiz değişmese de, bu dönemde günümüzdeki dev spiral galaksilere benzeyen, artık yıldız üretimi durmuş galaksiler de gözlemlenmiştir. Hiç var olmaması gereken bu galaksileri gözlemleyebilmiş olmamızın sebebi, o zamanlar birçok ilkel galaksinin yoğun bir şekilde çarpışması sonucunda yıldız üretiminin daha da hızlanması, buna bağlı olarak da yıldızlararası tozun bitmesi olabilir. Yıldızlararası toz bittiğinde bulutsular da oluşamayacağı için, yıldız üretimi durmuştur.

Eğer bu doğruysa, o zamanlardan gezegen ve biraz ilerisinde yaşam oluşma ihtimali de mümkün. Ama bu, sadece bir hipotezden ibaret. Bununla ilgili şu yazımı okuyabilirsiniz: Erkenden Ölmüş Galaksilerin Gizemine Bir Bakış.

Büyük Moleküler Bulutsular

Kartal Bulutsusu 3

Kartal Bulutsusu

İlk nesil yıldızlar ve ilkel galaksiler oluşurken bir yandan da yıldızlar arası uzayda maddeler toplanmaya devam ediyordu. Bu toplanmalar ile büyük moleküler bulutsular meydana geldi. Bu bulutsular galaksilerde yıldızlar arası uzayda bulunur. Galakside yeni oluşacak yıldızlar ve gezegenler için ham madde kaynaklarıdır. 300 ışık yılı genişliğindeki bir moleküler bulutsuda bizim güneşimiz gibi benzer 10.000 yıldız oluşturabilecek kaynak bulunmaktadır. Ama moleküler bulutsuların sadece %10′u yıldız oluşturmaya yetecek yoğunlukta olabilmektedir. Bu yeterlilik ise ortalama bir kaç yüzden bir kaç bin yıldıza değişiklik göstermektedir. Moleküler bulutsular dağılmadan 10 veya 100 milyon yıl bir arada bulunabilir.

Bulutsularda Yıldızların Doğumları

Yaratılış sütunları. Bu ismi almasının sebebi bir sürü yıldızın ondan doğmasıdır.

Yaratılış sütunları. Bu ismi almasının sebebi bir sürü yıldızın ondan doğmasıdır.

Büyük moleküler bulutsular oluştuktan sonra kütleçekimin etkisiyle kendi içinde topaklaşmalar oluşmaya başladı. Bu yoğunlaşma aynı zamanda ısıyı da artırdı. Isının artması ve yeterli yoğunluk ile hidrojen atomları birleşmeye, helyumu oluşturmaya başladı ve Önyıldız (protostar) dediğimiz oluşum meydana geliyordu. Bulutsular doğum sancıları çekiyordu. Fakat bu Önyıldız’lar görülebilir ışıkla görülemiyordu ve halen göremiyoruz. Çünkü etraflarını yoğun toz bulutu ile dolu olduğundan ışık bulutsuyu aydınlatıyordu sadece. Şu anda bu yıldızları kızılötesi teleskoplarla gözlemleyebilmekteyiz.

Yaşlı Yıldızlar ve Nükleosentez

İlk nesil yıldızlarımız evrenin kimyasını fazla değiştiremeden kısa ömürleri tükenmiş, patlamış ve ikinci nesil yıldızlar oluşmuş. Bu ikinci nesil yıldızlar kendi kütleçekimi altında büzüşmek ile çekirdeğindeki nükleer füzyonun ortaya çıkardığı enerjinin sebep olduğu dışarı itme kuvveti arasında bir denge kurarak ömrünü bu savaşa harcıyor.

Bir yıldızın parlaklığı, sıcaklığı, rengi, büyüklüğü ve yaşam süresi tamamen kütlesi ile ilgilidir. Küçük kütleli yıldızlar (ortalama güneşin 10da 1′i kadar) soğuyarak kırmızı cüce haline geldiler ve kim bilir kaç milyarlarca yıl boyunca yaşayacaklar. Güneşimiz ile benzer kütledekiler artık 10 milyar yıl hidrojen yakacaklar onlarda henüz bir değişim yok. Fakat daha büyük kütleli yıldızlar kısa ömürleri nedeniyle hemen yaşlanmış ve her yaktığı yakıtın katmanları çekirdeğin üstünde birikmiş durumda. Nükleosentez dediğimiz bu şekilde yakıtlarını füzyon ile birleştirerek yeni ve daha ağır elementler oluşturmasıdır yıldızın. Her yakıtın yıldızda, çekirdeğin üstünde bir katmanı olur. En yukarıda hidrojen olmak üzere aşağıya doğru helyum karbon olarak ilerler.

 

Yazımın 2. bölümünde ise şu başlıklar yer alacak.

  • Yıldızların Ölümü ve Yeni Elementler
  • Öngezegenimsi Diskler
  • Gezegenimsilerin Oluşması ve Öngezegenlerin Yoğunlaşması
  • Jüpiter, Dünya Gibi Gezegenlerin Oluşumları.
  • Yaşamın Kimyası

Genel Görelilik Ve Kuantum Mekaniği’nin Çıkmazı, İki Küskün Aşık

Büyük Birleşim Kuramı – Birleşik Alan Teorisi yazımda, konu Süper Birleşik Alan Teorisine ve büyük patlamaya geldiğinde bu konudan bahsedeceğimi söylemiştim. Aynı zamanda daha önce anlattığım ama yetersiz olan diğer yazım Kuantum mekaniği ve İzafiyet Teorisinin Bir Araya Gelememe Problemi ‘ni de güncellemiş oluyorum. Ben de gelişen ve öğrenen bir birey olarak aradan geçen zamanda çok yetersiz ve zayıf bir yazı olduğunu görebiliyorum ki bir süredir bu yazıyı yazmak istiyordum bu yüzden. Umarım bu yazılarımın da yetersiz ve zayıf geldiği geliştiğim günleri görürüm.

Bu iki teorinin neden bir araya gelemediğin, neden bir araya gelmesi gerektiğini bu sefer ayrı ayrı başlıklar altında anlatacağım.

Genel Görelilik Ve Kuantum Mekaniğini Uyumsuzluğunun Nedenleri

-Kütleçekimi Belirleme Biçimi-

Öncelikle kütleçekiminin her iki teoride ne olduğunu ele alalım Otomatik olarak neden uyumsuz olduğunu anlayabilirsiniz.

Genel Görelilik: Genel görelilikte uzay ve zaman birbirinden ayrılmaz öğelerdir ve enerji ile kütle, uzay-zamanın eğilmesine sebep olur. Kütleçekim bu eğilmenin sonucudur. Kütleçekimden ya da uzay-zamanın eğriliğinden dolayı bir obje yönünü değiştiriyor demek, genel göreliliğe göre o obje en düz çizgide ilerlemeyi, daha doğrusu bir mesafeyi en kısa zamanda almasıdır.

Kuantum Mekaniği: Kuantum mekaniğinde henüz hipotez halinde olsa da, yani ispatlanmamış olsa da, eğer ispatlanırsa kütleçekim şu şekilde olmalıdır: Kuantum mekaniğinin bir ürünü olan Standart Modele göre kütleçekim graviton denilen sanal parçacıklarla iletilen bir enerjidir. Herhangi bir bükülmenin sonucu değildir.

Bu ne gibi sıkıntılara sebep olur? Arkadaşlarla Beyin Fırtınası Keyfi-Başlangıç yazımda yer alan sohbetimde belirttiğim üzere, mesela, bir karadelikte dengesizliğe sebep olur. Her iki teori ile birden anlatmaya kalkarsak uzay-zamanın bükülmesi, gravitonların da kaçmasını engelleyerek kütleçekimin bir bakıma oluşmasını engeller.

-Zaman Kavramı-

Genel görelilikte uzay ve zaman birbirinden ayrılmaz kavramlardır demiştik. Oysa kuantum fiziğinde böyle değildir. Hatta kuantum fiziğinde zaman kavramı yoktur; an kavramı vardır. Her olay bir anda oluşur ve bu bakımdan olaylar arası süreklilik bulunmaz. Zaten kuantum tünellemenin ışıktan hızlı bilgi akışı gibi gözükmesinin sebebi budur aslında bana göre.  Hatta bazı durumlarda kuantum mekaniğinde geleceğin geçmişi etkileyebildiği de öngörülmektedir.

-Uzay ve Zamanın Bükülmesi-

Yukarıda da belirttiğimiz gibi genel görelilikte kütle ve enerji, uzay-zamanın bükülmesine sebep olur ve bu durum mutlak zaman kavramını da yıkmıştır. Fakat yukarıda belirttiğimiz kuantum fiziğinde gibi zaman yoktur ve uzay da bükülme de yoktur. Bunun belirsizlik ilkesi ile genel görelilikte neye sebep verdiğini anlatacağım.

-Uzay’ın Yapısı-

Genel görelilikte uzay sadece enerji ve kütle ile bükülebilir, eğilebilir ama düz ve pürüzsüz bir haldedir. Oysa ki kuantum mekaniğinde belirsizlik ilkesinin sebep olduğu kuantum dalgalanmaları nedeniyle planck mesafesinde uzay tamamen parçalanıp tanınmaz hale gelmektedir. Sebebini belirsizlik ilkesinde anlatacağım.

-Belirsizlik İlkesi-

Belirsizlik İlkesi

Belirsizlik ilkesi, 1927 yılında Werner Heisenberg tarafından öne sürüldü. Kuantum fiziğinde Heisenberg’in Belirsizlik İlkesine göre, bir parçacığın momentumu ve konumu aynı anda tam doğrulukla ölçülemez.

Kuantum mekaniğinde belirsizlik ilkesi mevcuttur. Yani bir parçacığın aynı anda hızını ve yerini ölçemezsiniz; size belirli bir oran verir. Hangisini daha kesinlikle ölçerseniz diğerini o kadar kesin olmayan bir değerle ölçmüşsünüz demektir. Ama genel görelilikte böyle bir şey yoktur. Burada artık, uzayın yapısı ve uzay-zamanın bükülmesiyle ilgili bahsettiğim konuları ele alıp toparlama zamanı geldi.

Belirsizlik ilkesi bir parçacığın aynı anda yerini ve hızını bilemeyeceğimiz söyler. Genel göreliliği boş uzayında ise hiç parçacık olmadığı anlamı demek bu kuralın ihlali demektir. Bu yüzden kuantum mekaniğinde boş uzay genelin ortalamasıdır. Hangi genelin? Planck mesafesinde yokluktan parçacık ve anti-parçacıklar oluşup sonra birbirlerini yok ederler. Bu devamlı oluşur. Bu var olma/yok olma savaşında uzay parçalanır, tanınmaz hale gelir. Bu genel görelilik ile kuantum mekaniğini birleştirmeye çalışmanın sonucudur. Genel göreliliğin hiçliği kuantum mekaniğinde imkansızdır ve bu var olma/yok olma savaşının ortalamasıdır. Genel görelilikte 0 gözükürken, kuantum mekaniğinde Planck mesafesine inildiğinde, tam bir savaş alanına dönüşüyor genel göreliliğin hiçliği.

-Determinizm-

Genel görelilikte belirsizlik ilkesi ve olasılık dalgaları olmadığından rahatlıkla determinizmden bahsedilebilir. Evrenin bir anda her parçacığının yerini ve hızını bilirseniz geleceği hesaplayabilirsiniz (bunu hesaplayacak işlem gücünü gözardı ediyoruz tabiki). Fakat kuantum mekaniğinde belirsizlik ilkesi nedeniyle hiç bir şeyin aynı anda yerini ve hızını belirleyemeyeceğimizi söyler. Bu yüzden kuantum mekaniğinde determinizm yoktur; olasılıklar vardır. Daha sonra olasılık determinizmi isminde bir kavram ürettiler fakat ne olduğunu henüz araştırmadım.

-Nesnellik-

Genel görelilikte her şey nesneldir ve bağımsızdır. Her şey çevresinden yalıtılarak incelenebilir. Fakat kuantum mekaniğinde bu nesnellik bağımsızlık yoktur. Kuantum mekaniğinde her şey olasılık dalgalarından oluşur ve enerji dalgaları olarak görülür.. Ve olasılık dalgaları tüm evrene yayılır. Bu yüzden de evren bir başlı başına bir bütündür ve bağımsız, nesnel bir yapı düşünülemez. Evrenin herhangi bir yerinde olan bir şey alakasız gözüken başka bir yeri de etkileyebilmektedir. Genel Göreliliğin ışık hızı sabitliği de burada kırılmış oluyor aslında. Bu durum, genel göreliliğin ve kuantum mekaniğinin olguları ele alışlarının farklılığından kaynaklanıyor.

-Gözlemci ve Gözlemlenen-

Genel görelilikte gözlemcilerin gözlemlediği şeyler arasında farklılık olabilir. Örnek olarak zaman ve boyutsal uzunluklar verilebilir. Fakat kuantum mekaniğinde nesnellik olmaması nedeniyle biri diğerini etkileyebildiği için, gözlemci farkı da ortadan kalkmaktadır.

Genel Görelilik Ve Kuantum Mekaniği Neden Birleştirilmeli?

Bu ikisi neden birleştirilmeli. Aslında cevabı basittir. Şu ana kadar bu ikisi birleştirilemediği için son yüzyıl içerisinde bilim insanları makro boyturlar için genel göreliliği mikro boyutlar için ise kuantum mekaniğini kullanarak bu birleştirme zorunluluğundan kaçtılar. Fizikçiler kuantum mekaniği ile Einstein’in kütleçekiminin bulunmadığı özel göreliliği birleştirerek kauntum alan teorisi yani standart modeli oluşturdular. Ama artık kaçabilecekleri bir yer kalmadı. Bazıları bu iki teoriyi birleştirmek için cesaretini toplamalı; bu cesareti gösterip deneyenler de oldu.

Öncelikle büyük patlama anı ve karadelikler gibi mikro boyutlarda makro kütleler yani kuantum mekaniğinin ilgi alanındaki çok küçük mesafelerde genel göreliliği ilgilendiren çok büyük kütleler olduğu durumlar vardır. İşte bu olguları cevaplandırmak istiyorsak bu ikisini birleştirmeliyiz. Ya da ikisini de yıkan yeni bir teori getirmeliyiz. Benim tahminime göre ikinci seçenek olacak gibi.  Aksi takdirde “Kütleçekimi Belirleme Biçimi“ başlığında belirttiğim karadelikteki kütleçekim bilmecesi ortaya çıkar.

Bundan sonra daha önce de belirttiğim üzere bir yazı dizisinin hazırlıklarına başlayacağım. İmkanım olursa kitap haline de getirmeyi düşünüşüyorum. Bu süre içinde farklı yazılarım da olacaktır. Bir sonraki yazımda görüşmek üzere.

Arkadaşlarla Beyin Fırtınası Keyfi-Başlangıç

Evet güzel bir isim oldu başlangıç için. Millet arkadaşlarla dondurma keyfi, arkadaşlarla tatil keyfi, cart keyfi curt keyfi diye resimler çekip altına yazıyor da ben neden böyle bir deneme yazmıyım dedim. Güzel de oldu hoş da oldu.

Öncelikle bu fikir iki günce önce aklıma geldi. Bir yerde garip bir soru bulup kendi feysbuk profilimde paylaşıp arkadaşlarımı etiketleyerek zorla beyin fırtınası yaptırınca aklıma geldi. Güzel sorular buldukça böyle yapıp bu kategoride paylaşmayı düşündüm. Tabi kendileri katılmaya devam ederse :)

İlk sorumuzu sordum ve devamı geldi.

Ben: Soru 1: Eğer kara delikten hiç bir şey kaçamıyorsa kuantum mekaniğine göre kütleçekim gravitonlarla iletildiğine göre gravitonlar nasıl kaçıyor?
Haydin bakalım kafa patlatabilecek var mı?

Read more

Işık Hızına Yakın Hızlandığımızda Zaman Neden Yavaşlar?

Bu soruyu aslında uzun zamandır sormuştum ama araştırmaya hiç yeltenmemiştim. Şimdi ise Evrenin Zarafeti kitabını okuduğumda bunun açıklamasını da gördüm. Anlatmalıyım dedim. Kolay olmayacak ama bakalım.

İzafiyet teorisine göre evrende ulaşılabilecek en yüksek hız ışık hızıdır. Ve ışık hızına ne kadar yaklaşırsanız sizin için zaman o kadar yavaşlayacaktır. Einstein ilk başta özel görelilik kuramını oluşturmuştur. Bu kuramda ışık hızı sabitliği ile zamanın ve hareketin kişiye göreceliğinden bahseder. Fakat özel görelilik newtonun kütleçekim kuramı ile ters düşüyordu. Newton kütleçekim kuramına göre mesela güneşimiz bir anda yok olsaydı dünyada onun kütleçekim etkisinden anında kurtulurdu. Fakat bu özel görelilik ile ters düşüyor. Çünkü özel göreliliğe göre hiç bir bilgi ışık hızından daha hızlı iletilemez. Işık hızı ile bir bilgi güneşten dünyaya 8 dakikada ulaştığına göre böyle olmaması gerekiyordu. Ve Einstein artık Newton’un kütleçekim kuramının çöktüğünü ve kendi kütleçekim kuramını oluşturması gerektiğini anladı. Özel görelilik gitti yerini genel görelilik teorisi aldı. Einstein daha sonra özel göreliliğin genel göreliliğin yanında çocuk oyuncağı kaldığını söyleyerek genel göreliliğin kendisini ne kadar zorladığını anlatmıştı.

Read more